L∞ stability of the MUSCL methods

نویسندگان

  • Stéphane Clain
  • Vivien Clauzon
چکیده

We present a general L stability result for a generic finite volume method for hyperbolic scalar equations coupled with a large class of reconstruction. We show that the stability is obtained if the reconstruction respects two fundamental properties: the convexity property and the sign inversion property. We also introduce a new MUSCL technique, the multislope MUSCL technique, based on the approximations of the directional derivative in contrast to the classical piecewise reconstruction, the monoslope MUSCL technique, based on the gradient reconstruction. We show that under specific constraints we shall detail, the two MUSCL reconstructions satisfy the convexity and sign inversion properties and we prove the L stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of MUSCL Relaxing Schemes to the Relaxed Schemes for Conservation Laws with Stiff Source Terms

We consider the convergence and stability property of MUSCL relaxing schemes applied to conservation laws with stiff source terms. The maximum principle for the numerical schemes will be established. It will be also shown that the MUSCL relaxing schemes are uniformly l and TV-stable in the sense that they are bounded by a constant independent of the relaxation parameter =, the Lipschitz constan...

متن کامل

Stability analysis of the cell centered finite-volume Muscl method on unstructured grids

The goal of this study is to apply the MUSCL scheme to the linear advection equation on general unstructured grids and to examine the eigenvalue stability of the resulting linear semi-discrete equation. Although this semi-discrete scheme is in general stable on cartesian grids, numerical calculations of spectra show that this can sometimes fail for generalizations of the MUSCL method to unstruc...

متن کامل

Convergence of MUSCL Relaxing Schemes

We consider the convergence and stability property of MUSCL relaxing schemes applied to conservation laws with stii source terms. The maximum principle for the numerical schemes will be established. It will be also shown that the MUSCL relaxing schemes are uniformly l 1-and T V-stable in the sense that they are bounded by a constant independent of the relaxation parameter , the Lipschitz consta...

متن کامل

Energy Stability of the Muscl Scheme

We analyze the energy stability of the standard MUSCL scheme. The analysis is possible by reformulating the MUSCL scheme in the framework of summation-by-parts (SBP) operators including an artificial dissipation. The effect of different slope limiters is studied. It is found that all the slope limiters do not lead to the correct sign of the entries in the dissipation matrix. The implication of ...

متن کامل

Robustness of MUSCL schemes for 2D unstructured meshes

We consider second-order accuracy MUSCL schemes to approximate the solutions of hyperbolic system of conservation laws. In the context of the 2D unstructured grids, we propose a limitation procedure on the gradient reconstruction to enforce several stability properties. We establish that the MUSCL scheme preserves the invariant domains and satisfy a set of entropy inequalities. A conservation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2010